Search results for "Car–Parrinello molecular dynamics"

showing 6 items of 6 documents

New fitting scheme to obtain effective potential from Car-Parrinello molecular dynamics simulations: Application to silica

2008

A fitting scheme is proposed to obtain effective potentials from Car-Parrinello molecular dynamics (CPMD) simulations. It is used to parameterize a new pair potential for silica. MD simulations with this new potential are done to determine structural and dynamic properties and to compare these properties to those obtained from CPMD and a MD simulation using the so-called BKS potential. The new potential reproduces accurately the liquid structure generated by the CPMD trajectories, the experimental activation energies for the self-diffusion constants and the experimental density of amorphous silica. Also lattice parameters and elastic constants of alpha-quartz are well-reproduced, showing th…

Car–Parrinello molecular dynamicsMaterials sciencemolecular dynamics calculations (Car-Parrinello) and other numerical simulationsTransferabilityGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyglasses01 natural sciencesMolecular physicsMolecular dynamicsLattice (order)0103 physical sciences[PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]010306 general physicsdensity functional theoryCondensed Matter - Materials Sciencegradient and other correctionsMaterials Science (cond-mat.mtrl-sci)Disordered Systems and Neural Networks (cond-mat.dis-nn)computer simulation of liquid structureCondensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnologylocal density approximation[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Amorphous silica0210 nano-technologyPair potential
researchProduct

Comparative classical and ab initio Molecular Dynamics study of molten and glassy germanium dioxide

2008

A Molecular Dynamics (MD) study of static and dynamic properties of molten and glassy germanium dioxide is presented. The interactions between the atoms are modelled by the classical pair potential proposed by Oeffner and Elliott (OE) [Oeffner R D and Elliott S R 1998, Phys. Rev. B, 58, 14791]. We compare our results to experiments and previous simulations. In addition, an ab initio method, the so-called Car-Parrinello Molecular Dynamics (CPMD), is applied to check the accuracy of the structural properties, as obtained by the classical MD simulations with the OE potential. As in a similar study for SiO2, the structure predicted by CPMD is only slightly softer than that resulting from the cl…

Condensed Matter - Materials ScienceGermanium dioxideCar–Parrinello molecular dynamicsMaterials scienceDynamic structure factorRelaxation (NMR)Ab initioMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesThermodynamicsDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksCondensed Matter Physicschemistry.chemical_compoundMolecular dynamicsgermaniamolecular dynamics simulationchemistryAb initio quantum chemistry methodsGeneral Materials SciencePair potential
researchProduct

Water adsorption on amorphous silica surfaces: A Car-Parrinello simulation study

2005

A combination of classical molecular dynamics (MD) and ab initio Car-Parrinello molecular dynamics (CPMD) simulations is used to investigate the adsorption of water on a free amorphous silica surface. From the classical MD SiO_2 configurations with a free surface are generated which are then used as starting configurations for the CPMD.We study the reaction of a water molecule with a two-membered ring at the temperature T=300K. We show that the result of this reaction is the formation of two silanol groups on the surface. The activation energy of the reaction is estimated and it is shown that the reaction is exothermic.

Exothermic reactionCar–Parrinello molecular dynamicsMaterials scienceAb initioFOS: Physical sciences02 engineering and technologyActivation energy010402 general chemistryRing (chemistry)01 natural scienceschemistry.chemical_compoundMolecular dynamicsAdsorptionGeneral Materials ScienceCondensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSilanolchemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Physical chemistry0210 nano-technology
researchProduct

Simulations of Glassforming Network Fluids: Classical Molecular Dynamics versus Car-Parrinello Molecular Dynamics

2010

Abstract Static and dynamic Properties of molten germanium dioxide are studied by two simulation methods, classical Molecular Dynamics (MD) using the Oeffner-Elliott (OE) potential, and “ab initio” Car-Parrinello Molecular Dynamics (CPMD). While CPMD provides a (presumably) more accurate description of the local structure and the forces, it severely suffers from finite size effects when the structure beyond the first neighbor shells is considered. For glassforming fluids, the demanding equilibrium needs are a further reason, why simply MD is still preferable, when a “good” effective potential is available.

Germanium dioxidechemistry.chemical_compoundCar–Parrinello molecular dynamicsMolecular dynamicsMaterials sciencechemistryChemical physicsAb initioPhysics and Astronomy(all)Local structureSimulation methodsComputational physicsPhysics Procedia
researchProduct

Classical and ab-initio molecular dynamic simulation of an amorphous silica surface

2001

We present the results of a classical molecular dynamic simulation as well as of an ab initio molecular dynamic simulation of an amorphous silica surface. In the case of the classical simulation we use the potential proposed by van Beest et al. (BKS) whereas the ab initio simulation is done with a Car-Parrinello method (CPMD). We find that the surfaces generated by BKS have a higher concentration of defects (e.g. concentration of two-membered rings) than those generated with CPMD. In addition also the distribution functions of the angles and of the distances are different for the short rings. Hence we conclude that whereas the BKS potential is able to reproduce correctly the surface on the …

Length scaleSurface (mathematics)Car–Parrinello molecular dynamicsMaterials scienceStatistical Mechanics (cond-mat.stat-mech)Ab initioFOS: Physical sciencesGeneral Physics and AstronomyDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksApproxCondensed Matter::Disordered Systems and Neural NetworksMolecular dynamicsDistribution functionHardware and ArchitectureChemical physicsAmorphous silicaCondensed Matter - Statistical MechanicsComputer Physics Communications
researchProduct

Density functional study of Cu2+-phenylalanine complex under micro-solvation environment

2013

Abstract We present an atomistic study carried out using density functional calculations including structural relaxations and Car–Parrinello Molecular Dynamics (CPMD) simulations, aiming to investigate the structures of phenylalanine-copper (II) ([Phe-Cu] 2+ ) complexes and their micro-solvation processes. The structures of the [Phe-Cu] 2+ complex with up to four water molecules are optimized using the B3LYP/6-311++G** model in gas phase to identify the lowest energy structures at each degree of solvation ( n  = 0–4). It is found that the phenylalanine appears to be in the neutral form in isolated and mono-hydrated complexes, but in the zwitterionic form in other hydrated complexes (with n …

Models MolecularCar–Parrinello molecular dynamicsPhenylalanineMolecular ConformationDFTMolecular dynamicsMaterials ChemistryMicro-solvationMoleculePhysical and Theoretical ChemistryPhenylalanine-copper (II) complexStructural motifta116Spectroscopyta114LigandHydrogen bondChemistrySolvationHydrogen BondingComputer Graphics and Computer-Aided DesignCrystallographySolvation shellModels ChemicalCPMDCopperJOURNAL OF MOLECULAR GRAPHICS AND MODELLING
researchProduct